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Abstract-The purpose of this paper is to formulate and solve the problem of steady free convection from 
a horizontal circular cylinder with a heated core embedded in a fluid-saturated porous medium. The 
governing equations were solved numerically using an efficient finite-difference technique. The effects of 
various parameters entering in the problem are presented in tabular and graphical forms. The thermal 
conductivity ratios of the cylinder wall to the porous medium vary from 0.5 to infinity. The ratio of cylinder 
inner radius to outer radius was 0.2, 0.5 and 0.9. The results were compared with the exact solution for 
the extreme case of a non-conjugate problem. Approximate solutions for the average boundary temperature 
between cylinder and porous matrix and for the average Nusselt number are also found, and the results 
are confirmed by numerical computations. It may be remarked that the present analysis gives compact 
formulae to provide useful information on the temperature distribution and the heat transfer from a 

cylinder and may find wide applications in the field of various thermal technologies. 

1. INTRODUCTION 

THE PROBLEM of free and forced convection from a 
horizontal heated cylinder embedded in a fluid-satu- 

rated porous medium is of considerable practical and 
fundamental interest. This occurs in a number of prac- 
tical applications such as oil recovery techniques 
(steam flooding process), in biomechanical problems 
(blood flow in the pulmonary alveolar sheet), in fil- 
tration, transpiration cooling, heat pipe technology 
and geothermal energy recovery and so there is a large 
amount of literature on the subject. The survey articles 
by Cheng [l] and Bejan [2], summarize very well the 
work done on this problem. Apart from these review 

articles it is, however, worth mentioning that free 

convection flows from horizontal cylinders have been 
investigated theoretically by many researchers such as 
Fernandez and Schrock [3], Merkin [4], Nilson [5], 
Ingham et ul. [6], Hasan and Mujumdar [7], Ingham 

and Pop [8], Nakayama and Koyama [9], and Farouk 
and Shayer [IO]. Experimental work has also been 

carried out by several researchers, see for instance, the 

papers by Schrock et al. [l l] and Fand et al. [ 121. 
The flow and temperature distributions in the forced 
convection circumstance have been studied by Sano 
[13], Ingham and Pop [14], Vasantha et al. [15], 
Kimura [l&18], and Pop and Cheng [19]. 

In many problems of practical interest, however, 
convection heat transfer depends strongly on the ther- 
mal boundary conditions. Free convection must then 

be studied as a mixed problem, which is termed a 
conjugate problem. The phenomenon depends on sev- 
eral parameters showing that in many cases this strong 
dependence does exist. 

Conjugate free convection flows about a circular 
cylinder immersed in a saturated porous medium have 
received little attention so far. Successful analytical 
solutions have, however, been obtained for problems 
of conjugate free convection flows about a tapered 
downward projecting fin of a simple power law form 
in a porous medium, see for example, papers by Pop 
et al. [20, 211, Liu et al. [22, 231, and Nakayama and 
Koyama [24], among others. 

In this paper, we consider the problem of conjugate 

free convection about a horizontal circular cylinder 

of thermal conductivity k,, which is placed in a fluid- 
saturated porous medium of thermal conductivity kf 

and a constant temperature T,,. It is assumed that 
the cylinder has a heated core region of a uniform 
temperature T,, where T, > T, Heat moves through 

the cylinder by two-dimensional conduction and is 
transferred from the solid-porous matrix interface by 

laminar free convection to the ambient fluid-porous 
medium. 

The purpose of the present paper is, therefore, to 
predict theoretically the flow and temperature dis- 
tributions in the fluid-porous medium region by the 
common solution of the momentum and energy equa- 
tions for the solid and the fluid, respectively. Of special 
importance is the temperature distribution at the 

3105 



3106 S. KIMUKA and 1. POP 

NOMENCLATURE 

a radius of the cylinder T,. T, temperatures (constant) of the core 

a, radius of the core region region and ambient fluid, respectively 
A a finite distance from a cylinder center AT applied temperature difference, T, - T, 

9 acceleration due to gravity u. 1’ dimensionless velocity components along 

k thermal conductivity ratio, X-,/k, (r. 4) axes. 

k, effective thermal conductivity of the 
porous medium Greek symbols 

k, conductivity of cylinder wall 

; 

thermal diffusivity 

K permeability of the porous medium coefficient of thermal expansion 
M a total number of grid points in the radial 6 boundary layer thickness 

direction A0 lemperature increment 

N a total number of grid points in the A* streamline increment 
angular direction 0 dimensionless temperature 

NU local Nusselt number, i. constant, equation (24) 

-(a/AT)(2TJiY), =,, v kinematic viscosity 

NU average Nusselt number, s: Nu d4/rr angular coordinate 

9” heat flux per unit area $1 dimensionless stream function. 

cl” average heat flux per unit area 

r dimensionless radial coordinate Subscripts 

R radius ratio, a,/a f variables in the fluid-porous medium 

Ra Rayleigh number for the porous medium, s variables in the solid 

Kgfi( T, - T, )a/rv i, .i nodal points. 

T temperature 

TV temperature in the convecting fluid Superscripts 

7.9 temperature in the solid cylinder dimensional variables 

r, dimensionless average boundary average quantities 
temperature, (T,, - T, )/( T, - T, ) I1 iteration order. 

interface between the solid cylinder and porous matrix 

and the overall transfer coefficients from the heated 
core to the ambient porous medium. Numerical solu- 
tions of the full momentum and energy equations 
are generated by using a finite-difference method. In 
addition, simple approximate analytical solutions for 

the average boundary temperature between solid and 
porous matrix and the average Nusselt number were 
derived when the Rayleigh number is large (Ra >> I), 
i.e. boundary layer approximation. Such analytical 
solutions have apparently not been presented before 
and have an advantage over the numerical results 
from a practical point of view. The results given by 
these formulae are consistent with the carefully per- 
formed numerical solutions. 

It may be mentioned to this end that important 
contributions to the problem of conjugate heat trans- 
fer from circular cylinders in low Reynolds number 
Newtonian fluids were made by Sunden [25, 261. 

2. GOVERNING EQUATIONS 

Consider the steady free convection flow from a 
circular cylinder of radius a embedded in a fluid- 
saturated porous medium of a uniform temperature 
T,,. The cylinder has a heated core region of radius 
acr with a, < a, where T, > T, The geometry and the 

coordinate system are shown in Fig. 1. If we make use 

of the polar system of coordinates (v’, 4) and assume 
that the angular coordinate is measured clockwise 
from the vertically down position and that the prob- 
lem is symmetric about a vertical plane passing 

through the axis of the cylinder, then consideration 
will be confined to the range 0 < 4 < n (or 

z < 4 < 27~). We also assume that the porous material 
is isotropic and homogeneous, and the fluid is incom- 

FIG. 1. Physical model and coordinate system 
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pressible. t Under these assumptions and invoking 

the Boussinesq-Darcy approximation, the free con- 

vection flow from the solid cylinder is described by 

the equations of continuity 
(12) 

(1) V%, = 0 (13) 

and momentum subject to the boundary conditions 

1 au’ rf &>’ 

r’ &/I r’ &’ 
t/1=0, OF=@,, z=k$ at r=l (14) 

gBK 

- ( 
El,=1 at r=R (15) 

V $=O, Of=0 as r+m (16) 

equation of energy in the fluid-porous medium ae, a0, 
I)=~~=G=O on f$=O,71 (17) 

where Ra = gfiATKa/ctv is the Rayleigh number for 

the fluid-porous medium and V’ denotes the two- 

(3) dimensional Laplacian. 

equation of heat transfer inside the cylinder 
The physical quantities of primary interest in this 

problem include the local and average Nusselt 

a ,ar, ---( > 1 a2Ts 
rg +F~=O (4) 

numbers, which are defined through the relations 

W 

where (u’, 0’) are the velocity components in the r’ 
Nu d$. (18) 

and 4 directions, and T, and T, are the temperatures 

of the fluid-saturated porous medium and of the solid 
Using the non-dimensional variables (9), the heat 

cylinder, respectively. Equations (1) to (4) are to be 
transfer parameters can be written as 

solved with respect to the following boundary con- 
ditions at the fluid-wall interface 

u’ = 0, Tr = Ts, I&: = k,g at r’ = a (5) (19) 

within the core region 3. APPROXIMATE ANALYTICAL SOLUTION 

T, = T, at r’ = a, (6) The coupled character of boundary conditions 

far away from the cylinder (14)-( 17) preclude an analytical solution for the prob- 

u’ = c’ = 0, T; = T, as r’ + zz (7) 
lem composed of equations (1 l)-( 13). There is, how- 
ever, a limiting condition, given by the boundary layer 

symmetry conditions assumption that Ra D 1, valid in the region near the 

aT, aT, 
solid cylinder, where this problem possesses an ana- 

$’ = -----. = - = 0 lytical solution. It is logical, and as we shall see, quite 

%J 84 
along $I = 0, n. (8) 

fruitful, to attempt to report an analytical solution of 

The governing system of equations (1) to (4) was 
the posed problem for this limiting case. In the interest 

first transformed into a dimensionless form before it 
of brevity, only the key formulae are reported. 

was solved numerically. To achieve this, one intro- 
From the one-dimensional equation of heat balance 

duces the following dimensionless variables 
between the solid and fluid interface (at r’ = a), the 
heat flux (per unit area) q” can be expressed as 

r = r’ja, * = *‘/u, u = ad/a, v = ad/a 

0 = (T- T,)/AT, R = a,/a, k = k,/k, (9) 
2&G-c - Td = k s- T, 

“’ = 2na In (a/a,) tr 6 
(20) 

where AT = T,- T, and $’ is the stream function where T,, is the average temperature at the surface of 
satisfying the continuity equation with the cylinder defined by l”, T’(a, 4) d+/z, and 6 is the 

1 a*’ thickness of the boundary layer along the cylinder, 

u’=r’v, 
W’ 21’ = - -, 
dr’ 

(IO) which, under the boundary layer approximation, is 
given by, see Ingham and Pop [8], 

By introducing equation (9) into equations (2)-(4), 
we arrive at the following dimensionless system of 

6/a = 2.503Ra- “2 (21) 

equations where Ra is the Ravleigh number defined bv an effec- < _ 
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tive temperature difference across a porous medium, 
and assumed to be much greater than unity. Conse- 

quently, equations (20) and (21) lead to the following 
approximate solution for the average boundary tem- 
perature between solid cylinder and porous matrix 

(22) 

where Th = (T,,-T,.)/(T,-T,), k = k,/k,-. When k 

is large, the Rayleigh number based on temperature 

difference of Th- T,, is effectively the same as one 
based on T,- T, On the contrary when k is small, 
the effective Ra based on T,- T, is also small. In this 

case the temperature drop takes place mostly within 
the cylinder wall, and convection plays only a minor 
role in determining the boundary temperature. It 
can, therefore, be conceivable that equation (22) is 
relatively insensitive to the definition of the Rayleigh 

number; the Rayleigh number in equation (22) can 
be replaced by the c1 priori known Rdyfeigh number. 

which is based on the temperature difference T, - T, 

Further, from the definition of the average Nusselt 
number in terms of the non-dimensionalized T,,, we 

have 

if equation (20) is used. Equation (23) suggests that 
the ratio of Nu to T, Ru’ ’ is always constant, that is 

Nu < 

T, Ru’ ’ 
(24) 

where 1 is a constant to be found. Upon substituting 
equation (22) into equation (24), we finally obtain 

I + Ru’ * In (a/a,)/(2..5k) 
(25) 

which may readily be evaluated once the unknown 
constant i has been determined. Regarding the Ray- 
leigh number the same argument as one given to equa- 
tion (22) holds for equations (23)-(25). The validity 
of equations (24) and (25) will be tested extensively 
for various parametrrc values solving equations (1 l)- 
(13) with the boundary conditions (14)-( 17) numeri- 
cally in the next two sections. A value of i of 0.4 was 
thus found to predict Nu with the help of equation 

(25). 
The engineering significance of the results described 

Table 1. Effect of the size of computational domain on the 
average Nusselt number (k + 2) 

Numerical 
lngham and -~--~- 

Ra pop [81 A=3 A=5 ‘4 = 10 ‘4 = 15 

20 2.183 1.9227 2.0925 2.1492 2.1631 
40 3.008 2.86X3 2.9414 3.0299 3.0427 

100 4.582 4.4474 4.5591 4.5882 4.6023 
400 8.691 8.59X I 8.7922 8.8290 8.8444 

Table 2. Effect of a number of grid 
points on the average Nusselt number 

(A = 10, k + Lxx) 

RLI 40x31 50x41 

20 2.1261 2.1424 
40 2.9714 2.9X36 

I 00 4.5882 4.5987 
400 X.8290 X.8325 

by equations (22) and (25) is that Th and Nu can 

be evaluated immediately, provided k (= k,/k,-), R 

( = a,/n) and Ra are specified. 

4. THE NUMERICAL COMPUTATIONS 

Since the numerical scheme to be described in this 
section is quite similar to that employed in two recent 
papers by Kimura and Pop [27,28] only an outline of 
this method will be presented here. 

One difficulty in the present problem, particularly 
in a numerical point of view, is to determine appro- 
priate far field boundary conditions. A possible con- 

dition would be an open boundary condition at a finite 

distance from a cylinder. The boundary conditions of 

(a) 

( w 
FIG. 2. Streamlines and isotherms fork = 1 and R = 0.2, (a) 
Ra = 20, AI/J = 0.5 and At7 = I : (b) Ra = 400, Ati = 2 and 

A0 = 0. I. 
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equation (16) can therefore be replaced by 

n*/ar = 0, 

Of = 0 if I?$/@ < 0, at r = A. (26) 

%,/dr = 0 if a*jqb > 0 

In order to determine an appropriate finite distance 
A from a cylinder, we did several .calculations varying 
A from 3 to 15. The results of the average Nusselt 
number for k -+ CC are given in Table 1 and compared 
with the analytical solutions by Ingham and Pop 

(1987). It is seen from the table that A = 10 is large 
enough to produce an accurate numerical result. Next 
we fixed A = 10, and refined the grid network in the 

porous region from 40 x 3 1 to 50 x 41. The average 
Nusselt numbers in Table 2 show that the differences 
between the two are well below 1%. 

The partial differential equations (1 l)-( 13) were 
finite-differenced employing control volume approach 
and non-uniform grid network as described by Patan- 
kar [29]. The total number of the nodal points varied 

from I333 (43 in the radial direction and 31 in the 
angular direction) to 2911 depending upon R (the 

ratio of the core radius to the cylinder one) and Ra, 

the Rayleigh number. The convergence of the tem- 
perature distribution was monitored at each iteration. 

The convergence criterion needed for termination of 

computation was preassigned as 
M N 

where the superscript n denotes the iteration order. 

It should be noted that although computations were 
performed for a large range of values of the par- 
ameters k, R and Ra, we present here results only for 

k = 0.5, 1, 4, 20 and rx,; R = 0.2, 0.5 and 0.9; 
Ra = 10, 20, 40, 100, 400 and 800. The output has 

been displayed in terms of streamlines, isotherms, 
average temperature as well as the average Nusselt 

numbers. 

5. RESULTS AND DISCUSSION 

5.1. Streamline and isotherm pattern 
Detailed streamline and isotherm behavior are pre- 

sented in Figs. 224 for k = 1 and 20; Ru = 20 and 400. 

In these plots the results are illustrated for three values 

of R, namely, R = 0.2, 0.5 and 0.9. Each curve in the 
plots on the left-hand side represents a streamline 

(a) 

FIG. 3. Streamlines and isotherms for k = 20 and R = 0.5, FE. 4. Streamlines and isotherms for k = 20 and R = 0.9, 
(a)Ra=2O,A$=1andA0=0,1;(b)Ra=4OO,A$=5 (a)Ra=20,A$=IandAH=O.l:(b)Ra=4OO,A~=5 

and A0 = 0.1. and A0 = 0.1. 
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FIG. 5. Variation of the average boundary temperature with FIG. 6. Variation of the local Nusselt number with C/L (a) 
Rn, (a) R = 0.2: (b) R = 0.5: (c) R = 0.9. R = 0.2: (b) R = 0.5: (c) R = 0.9. 

while each curve on the right-hand side represents an 
isothermal line. As is expected, evidence of plume 
development is found near the top surface of the cyl- 

inder. The width of plume decreases as Ru increases 
and, therefore, the heat transfer activity in the plume 
region is low; the bottom side of the cylinder domi- 
nates the heat transfer in the flow field. This results in 
great differences between the temperature distribution 
along the bottom and top symmetry lines. The thermal 

boundary layer is well developed along the surface 
of the cylinder and the temperature tends to zero 
everywhere except in the vicinity of the cylinder and 
in the plume when Ra is increased. Further, it is seen 
from these figures that by increasing k the thermal 
resistance across the cylinder wall becomes weaker 
and thus the temperature driven force on the fluid 
porous medium will be stronger. As is evident, 
however, when comparing the results in Figs. 2(a)- 
4(a) with those in Figs. 2(b)+b), the parameter Rtr 

has a stronger effect on the flow and tempcrnturc fields 
than the parameter k. 

Complementary to the previous six figures, Figs. 5- 

(b) 0 

2 

t -k=0.5 

-k=20 

0 n/2 x 

4 

8 depict the effects of the involved parameters in this 
problem on the temperature and heat transfer 
coefficients. 

5.2. Temperature distribution 

In Fig. 5 the variation of the average temperature 
at the solid-~uid interface with respect to Ra for 

several values of k (as indicated on graphs) and three 

values of R is shown. The analytical solution rcp- 
resented by equatipn (22) is also plotted (full lines) 
for comparison. These figures clearly show a very 
good agreement between the theoretical and numeri- 
cal prediction of r, especially for higher values of il. 
which is in accord with the discussion on Rrr in Section 
3. Further, WC see that the average temperature is 
greatly influenced by the conjugated parameter k ; it 
increases as k is increased. 

5.3. Heat transjh c~~~~~ie~t,~ 
Figure 6 shows the distribution of the local Nusselt 

number along the cylinder surface. The results arc 
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Ra 

FIG. 7. Variation of %$(Ra”’ Tij with Ra, (a) Ii = 0.2; (b) 
R = 0.5 ;‘(c) R = 0.9. 

depicted for k = 0.5 and 20 ; Ra = 10 and 800 when 
R = 0.2, 0.5 and 0.9. Again, the remarkable effect of 
k is clear. As k is increased, the local Nusselt number is 
increased especially on the bottom side of the cylinder. 

The variation of Nu/(Ra”’ z) with Ra for four 
values of k and three values of R is illustrated in Fig. 
7. As was already noted in Section 3, we see here that 
this quantity remains constant and has a value of 0.4 
(= jt). This enables us to suggest the analytical for- 
mula (25) for the evaluation of the average Nusseft 
number NM. The reasons for this choice are: (i) the 
simplicity in its structure and (ii) it is a very convenient 
formula for engineering calculations. On the other 
hand. it is worth mentioning that the constant I = 0.4 
is very close to %]Ra’!2 = 0.444 reported for the 
problem of free convection boundary layer about an 
isothermal vertical plate suspended in a porous 
medium, see Cheng and Minkowycz [30]. This is con- 
sistent with the limiting case of k -+ cc and Ka + large 
but finite in equation (23). 

In Fig. 8 we have shown the variation of the average 
Nusselt number with Ra for several values of k and 
R. The analytical solution (25) has also been displayed 

iii 

(b) 

iii 

(c) 

100 I 

. k=m - Eq.(25) 

o k=20 

.f t 
IO 100 1000 

10 

1 
IO 100 1000 

Fla 

FIG. 8. Variation of the average Nusseit number with Ru, 
(a) R = 0.2; (b) R = 0.5; (c) R = 0.9. 

here (full lines). Again, the agreement between 
numeric and approximate solution is very good. 

Finally, we notice that the effect of the radius ratio 
R on the heat transfer results can be studied by com- 
paring the results in Figs, 5-8. It can thus be observed 
that for the same values of k and Ra, the average 
temperature and heat transfer coefficients are smaller 
for smaller values of R (=0.2. say) than those for 
larger values of R (~0.9, say). This is so because for 
smaller R the solid insuiation layer is thicker than that 
for larger R. 

6. CONCLUSIONS 

This investigation has solved the problem of con- 
jugate free convection from a horizontal circular cyl- 
inder with a heated core region immersed in a fluid- 
saturated porous medium. The geometry considered, 
means that a vertical symmetry plane exists and the 
problem is solved only for the vertical half plane. 
The unite-differential equations formulated in polar 
coordinates have yielded very accurate results for flow 
and heat transfer characteristics. In the case of the 
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boundary layer approximation simple approximate 13. T. Sane, Unsteady heat transfer from a circular cylinder 
formulae for the average temperature at the surface of immersed in a Darcy flow. J. En,qn,q Ma/h. 14, 177 190 

the cylinder and averaie Nukelt number were found, (1980). 

which compare very well with the exact numerical 
14. D. B. In&ham and I. Pop, Free-forced convection from 

solutions. The authors believe that these formulae arc 
;I heated longitudinal horizontal cylinder embedded 111 ;I 
porous medium. M i/r/rrc,- rr/lt/ ,S/o/fiih~,r/~. 20, 2X3 7X9 

well suited for the problem because of the ease with (1986). 

which they can be handled and accuracy with which 15. R. Vasantha. G. Nath and I. Pop, I’orced convection 

the irverage temperature and the average Nussclt num- along a longitudinal cylinder embedded in a saturated 

ber can bc evaluated. 
porous medium. Itl/. C’o/nn,lrn. Hrcrr Mrrxv Trrmrfir 14. 
639_~646 (1987). 

16. S. Kimura. Forced convection heal tr-ansfer aboul an 
Acknoll,/~~yemPn/.s-The authors gratefully acknowledge a elliptic cylinder in a saturated porous mcdlum, //z/ .!. 

number of constructive comments made by the reviewer. Hwt A4o.v.v Trm.v/iv 31, I97 199 ( 1988). 
17. S. Kimura. Forced convection heat transfer ahout a 

cylinder placed in porous media with longitudinal Hews. 
//I/. J. Hctr/ Fluid Fh 9, X3 X6 (1988). 
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CONVECTION NATURELLE CONJUGUEE A PARTIR DUN CYLINDRE CIRCULAIRE 
NOYE DANS UN MILIEU POREUX 

Rksumk-Le but de l’ttude est de formuler et de resoudre le probltme de la convection naturelle permanente 
a partir d’un cylindre circulaire horizontal, avec un coeur chauffe, noye dans un milieu poreux sature de 
fluidc. Les equations sont resolues numeriquement en utilisant une technique de differences tinies. Le 
rapport des conductivites de la paroi du cylindre et du milieu poreux varie de 0.5 a I’infini. Le rapport des 
rayons interieur ct exterieur du cylindre a les valeurs 0.2, 0.5 et 0,9. Les resultats sont compares i la 
solution exacte du cas extreme d’un probleme non conjugue. On obtient ainsi des solutions approchtes 
pour la temperature moycnne de la frontiere entre le cylindre et la matrice poreuse et pour le nombrc de 
Nusselt moyen. et les resultats sont confirmes par des calculs numeriques. On peut remarquer que cctte 
etude donne des formules compactes pour fournir unc information sur la distribution de temperature ct 
sur Ic transfert thermique a partir du cylindre. cc qui peut Etre utile dans beaucoup d’applications en 

technologie thermique. 

KONJUGIERTE FREIE KONVEKTION AN EINEM KREISZYLINDER IN EINEM 
PORiiSEN MEDIUM 

Zusammenfassung-In der vorhegenden Arbeit wird das Problem der stationaren freien Konvektion an 
einem horizontalen Kreiszylinder mit beheiztem Kern, der in ein fliissigkeitsgesattigtes poriises Medium 
eingebettet ist, formuliert und gelost. Die Bilanzgleichungen werden mit einem effizienten Finite-Differ- 
cnzen-Verfahren numerisch geliist. Der EinfluB unterschiedlicher Eingangsparameter ist in tabellarischer 
und gralischer Form dargestellt. Das Verhaltnis der Warmeleitfahigkeiten der Zylinderwand und des 
porlisen Mediums wird im Bereich zwischen 0.5 und unendlich variiert. Fiir das Verhaltnis von innerem 
zu auBerem Zylinderradius wird 0,2 : 0,5 und 0.9 gewahlt. Die Ergebnisse werden mit der exakten Liisung 
fur den Extremfall eines nicht-konjugierten Problems verglichen. Naherungslosungen fiir die mittlere 
Randtemperatur zwischen Zylinder und poriiser Matrix und fur die mittlere Nusselt-Zahl werden ebenfalls 
ermittelt. Die Ergebnisse werden von den numerischen Berechnungen bestltigt. Es sol1 angemerkt werden, 
dal3 die vorliegende Analyse komprimierte Formeln liefert, urn niitzliche Informationen iiber die l‘cm- 
peraturvertcilung und den Warmetransport an einem Zylinder bereitzustellen, was weitreichende Anwen- 

dungen auf dem Gebiet der Wsrmetechnik finden kann. 

COnPRXCEHHAJI CBO6OAHAR KOHBEKL(MII OT KPYrOBOTO ~RJIMH,QPA, 
IIOME~EHHOI-0 B l-IOPkICTYlO CPEAY 

hHOTau~~-UenbEO HaCTOmuerO BccnenoBaHMa RBnleTCIl +OpMynHpOBKa H peUIeHHe 3anaw CTau&iO- 

HapHOii CBO6OLIHOti KOHBeKuIlll OT rOp830HTaJIbHOrO KpyrOBOrO UHnHHnpa, HarpeTa,-, UeHTpa,,bHa% 

YacTb ~0T0p0r0 noilleueaa B HacbUueHHym mmKocTbm nopmry~~ cpeny. Onpenemmuee ypaeHemin 

peU,anHCb WCJEHHO C HCUOJlb30BaHlleM 3+$CKTUBHOrO MCTOLla KOHC'IHbtX pa3HOCTek ?++eKTbI pas- 

nmHb*x napafdeTpoe,BXojwuwX B sana9y,npencTaBneHbl B mine TaBmu )I rpa@iKoe,3HareHm OTHO- 

UIeHIlll TeUJIOUpOBOnHOCTeti CTeHKH UHnliHApa II UOpHCTOii CpeLIbI 83MeHlnHCb OT 0,5 a.0 

6eCKOHe4HOCT~.OTHOlUeHIle BHyTpeHHerO II BHeLLIHerO panHyCOB WiJIllHApa COCTaBJMJlO 0,2;0,5 A 0,9. 
Pe3ynbTaTbI CpaBHHBanllCbC TOYHUM peUIeH&leM LLWi 3KCTpeManbHOrO CnyVaH HeCOllpSKeHHOii 3ajJaW. 

HatineHbI TaKme npe6nuxeHHbIe pemeeaa anll cpenneH *eMnepaTypbl rpaHaUb* Memny UunaHnpoM r( 

UOpLiCTOti MaTpHUei?,a TaK)Ke anll CpenHero wcna HyCCenbTa,H nonyqeao IIonTBepwleHEie pesynbTa- 

TOB 'WfCneHHblMA paC'leTaMA. MO~HO OTMeTATb, 9TO HaCTOnud aHanB3 UaeT KOMUaKTHbIe +OpMyJIbI 

nns nonyYeHnu UOne3HOti aH+opMaunH o pacnpeneann TeMnepaTyp n Tennoo6Mene unnutinpa, 
KOTOpbIe MOryT UlHpOKO ACUOnb30BaTbCFI L,nll OUACaHRI pa3nHYHbIX TCXHOnOrAYCCKIIX TeUnOBb,X UpO- 

uecco8. 


