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Abstract—The purpose of this paper is to formulate and solve the problem of steady free convection from
a horizontal circular cylinder with a heated core embedded in a fluid-saturated porous medium. The
governing equations were solved numerically using an efficient finite-difference technique. The effects of
various parameters entering in the problem are presented in tabular and graphical forms. The thermal
conductivity ratios of the cylinder wall to the porous medium vary from 0.5 to infinity. The ratio of cylinder
inner radius to outer radius was 0.2, 0.5 and 0.9. The results were compared with the exact solution for
the extreme case of a non-conjugate problem. Approximate solutions for the average boundary temperature
between cylinder and porous matrix and for the average Nusselt number are also found, and the results
are confirmed by numerical computations. It may be remarked that the present analysis gives compact
formulae to provide useful information on the temperature distribution and the heat transfer from a
cylinder and may find wide applications in the field of various thermal technologies.

1. INTRODUCTION

THE PROBLEM of free and forced convection from a
horizontal heated cylinder embedded in a fluid-satu-
rated porous medium is of considerable practical and
fundamental interest. This occurs in a number of prac-
tical applications such as oil recovery techniques
(steam flooding process), in biomechanical problems
(blood flow in the pulmonary alveolar sheet), in fil-
tration, transpiration cooling, heat pipe technology
and geothermal energy recovery and so there is a large
amount of literature on the subject. The survey articles
by Cheng [1] and Bejan [2], summarize very well the
work done on this problem. Apart from these review
articles it is, however, worth mentioning that free
convection flows from horizontal cylinders have been
investigated theoretically by many researchers such as
Fernandez and Schrock [3], Merkin [4], Nilson [5],
Ingham et al. [6], Hasan and Mujumdar [7], Ingham
and Pop [8], Nakayama and Koyama [9], and Farouk
and Shayer [10]. Experimental work has also been
carried out by several researchers, see for instance, the
papers by Schrock et al. [11] and Fand et al. [12].
The flow and temperature distributions in the forced
convection circumstance have been studied by Sano
{13], Ingham and Pop [14], Vasantha et al. [15],
Kimura [16-18], and Pop and Cheng [19].

In many problems of practical interest, however,
convection heat transfer depends strongly on the ther-
mal boundary conditions. Free convection must then

be studied as a mixed problem, which is termed a
conjugate problem. The phenomenon depends on sev-
eral parameters showing that in many cases this strong
dependence does exist.

Conjugate free convection flows about a circular
cylinder immersed in a saturated porous medium have
received little attention so far. Successful analytical
solutions have, however, been obtained for problems
of conjugate free convection flows about a tapered
downward projecting fin of a simple power law form
in a porous medium, see for example, papers by Pop
et al. [20, 21}, Liu et al. [22, 23], and Nakayama and
Koyama [24], among others.

In this paper, we consider the problem of conjugate
free convection about a horizontal circular cylinder
of thermal conductivity k,, which is placed in a fluid-
saturated porous medium of thermal conductivity k;
and a constant temperature 7. It is assumed that
the cylinder has a heated core region of a uniform
temperature 7., where T, > T... Heat moves through
the cylinder by two-dimensional conduction and is
transferred from the solid—porous matrix interface by
laminar free convection to the ambient fluid—porous
medium.

The purpose of the present paper is, therefore, to
predict theoretically the flow and temperature dis-
tributions in the fluid—porous medium region by the
common solution of the momentum and energy equa-
tions for the solid and the fluid, respectively. Of special
importance is the temperature distribution at the
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NOMENCLATURE
a radius of the cylinder T., T, temperatures (constant) of the core
a. radius of the core region region and ambient fluid, respectively
A a finite distance from a cylinder center AT  applied temperature difference, 7.— T,
g acceleration due to gravity u, v dimensionless velocity components along
k thermal conductivity ratio, k,/k; (r. ¢) axes.
k; effective thermal conductivity of the
porous medium Greek symbols
k. conductivity of cylinder wall X thermal diffusivity
K permeability of the porous medium p coefficient of thermal expansion
M a total number of grid points in the radial ) boundary layer thickness
direction A temperature increment
N a total number of grid points in the Ay streamline increment
angular direction 0 dimensionless temperature
Nu  local Nusselt number, Y3 constant, equation (24)
—(a/ATYOT/Or"), _, v kinematic viscosity
Nu  average Nusselt number, |, Nu do/n ¢ angular coordinate
q" heat flux per unit area v dimensionless stream function.
q average heat flux per unit area
r dimensionless radial coordinate Subscripts
R radius ratio, a./a f variables in the fluid-porous medium
Ra Rayleigh number for the porous medium, s variables in the solid
KgB(T.— T, )ajav i,/ nodal points.
T temperature
T; temperature in the convecting fluid Superscripts
T. temperature in the solid cylinder ! dimensional variables
T, dimensionless average boundary average quantities
temperature, (T, — T )/(T.—T,) n itcration order.

interface between the solid cylinder and porous matrix
and the overall transfer coefficients from the heated
core to the ambient porous medium. Numerical solu-
tions of the full momentum and energy equations
are generated by using a finite-difference method. In
addition, simple approximate analytical solutions for
the average boundary temperature between solid and
porous matrix and the average Nusselt number were
derived when the Rayleigh number is large (Ra > 1),
i.e. boundary layer approximation. Such analytical
solutions have apparently not been presented before
and have an advantage over the numerical results
from a practical point of view. The results given by
these formulae are consistent with the carefully per-
formed numerical solutions.

It may be mentioned to this end that important
contributions to the problem of conjugate heat trans-
fer from circular cylinders in low Reynolds number
Newtonian fluids were made by Sundén [25, 26].

2. GOVERNING EQUATIONS

Consider the steady free convection flow from a
circular cylinder of radius ¢ embedded in a fluid-
saturated porous medium of a uniform temperature
T,,. The cylinder has a heated core region of radius
a., with a. < a, where T, > T,.. The geometry and the

coordinate system are shown in Fig. 1. If we make use
of the polar system of coordinates (r', ¢) and assume
that the angular coordinate is measured clockwise
from the vertically down position and that the prob-
lem is symmetric about a vertical plane passing
through the axis of the cylinder, then consideration
will be confined to the range 0<¢ <n (or
7 < ¢ < 27). We also assume that the porous material
is isotropic and homogeneous, and the fluid is incom-

F1G. 1. Physical model and coordinate system.
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pressible. ' Under these assumptions and invoking
the Boussinesq—Darcy approximation, the free con-
vection flow from the solid cylinder is described by
the equations of continuity

~ AL

o (/ ’ +07 __0 (1
ar/ ru) a¢ - )
and momentum
1 ouw ¢ v
"o ¥oor
_gﬂK oT; . 0T, cos ¢
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equation of energy in the fluid—porous medium

,(?Tr+vi oT, |1 ¢ ( oT; 1 8°T;
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3
equation of heat transfer inside the cylinder
& { T\ 1 o°T,
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where (u’, v') are the velocity components in the r’
and ¢ directions, and T; and 7, are the temperatures
of the fluid-saturated porous medium and of the solid
cylinder, respectively. Equations (1) to (4) are to be
solved with respect to the following boundary con-
ditions at the fluid-wall interface

0 oT,

T,
‘=0, Tr=T. koo =k ‘=
u =0 v . o k, o at r=a (5
within the core region
T.=T., at r =a, 6)

far away from the cylinder
w=v'=0 T,=T, as r' ->w @)

symmetry conditions

‘//—?-Zf—aTs—o 1 =0 8
P P along ¢ =0,7. )

The governing system of equations (1) to (4) was
first transformed into a dimensionless form before it
was solved numerically. To achieve this, one intro-
duces the following dimensionless variables

Y=y'lo,
0=(T-T,)AT, R=a.a,

r=r'la, v= av'/a

k =kk; (9)

u=au'la,

where AT = T,—T,, and ¢’ is the stream function
satisfying the continuity equation with
, Loy , o’

v =

“Eree VT T w

(10)

By introducing equation (9) into equations (2)—(4),
we arrive at the following dimensionless system of
equations
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where Ra = gBATKajov is the Rayleigh number for
the fluid-porous medium and V* denotes the two-
dimensional Laplacian.

The physical quantities of primary interest in this
problem include the local and average Nusselt
numbers, which are defined through the relations

a (T, S RELE A
TAT\or ) "= R udg.

Using the non-dimensional variables (9), the heat
transfer parameters can be written as

_ 00, — " 00,
Nu= — (61'),1’ Nu-—;L <— 6r>,_ld¢'

(19)

Nu = (18)

3. APPROXIMATE ANALYTICAL SOLUTION

The coupled character of boundary conditions
(14)—(17) preclude an analytical solution for the prob-
lem composed of equations (11)-(13). There is, how-
ever, a limiting condition, given by the boundary layer
assumption that Ra > 1, valid in the region near the
solid cylinder, where this problem possesses an ana-
lytical solution. It is logical, and as we shall see, quite
fruitful, to attempt to report an analytical solution of
the posed problem for this limiting case. In the interest
of brevity, only the key formulae are reported.

From the one-dimensional equation of heat balance
between the solid and fluid interface (at r* = a), the
heat flux (per unit area) ¢” can be expressed as

"o__ 2nks(Tc - Th) " Tb - Tx
T = Snain(aja) ~ 7 5

(20)

where T, is the average temperature at the surface of
the cylinder defined by {7} 7"(a, ¢) d¢/n, and 4 is the
thickness of the boundary layer along the cylinder,
which, under the boundary layer approximation, is

given by, see Ingham and Pop [8],
8la=2.503Ra""? @1

where Ra is the Rayleigh number defined by an effec-
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tive temperature difference across a porous medium,
and assumed to be much greater than unity. Conse-
quently, equations (20) and (21) lead to the following
approximate solution for the average boundary tem-
perature between solid cylinder and porous matrix

T 2.5k
> 7 2.5k+Ra'? In (a/a)

where T, = (T,— T )NT.—T.), k = kjk;. When k
is large, the Rayleigh number based on temperature
difference of T,— T, is effectively the same as one
based on 7.,—7... On the contrary when k is small,
the effective Ra based on T,,— T, is also small. In this
case the temperature drop takes place mostly within
the cylinder wall, and convection plays only a minor
role in determining the boundary temperature. It
can, therefore, be conceivable that equation (22) is
relatively insensitive to the definition of the Rayleigh
number; the Rayleigh number in equation (22) can
be replaced by the a priori known Rayleigh number,
which is based on the temperature difference 7,— T, .

Further, from the definition of the average Nusselt
number in terms of the non-dimensionalized 7, we
have

(22)

o o T _T,, ‘ .
Nu=20 0 n patt LT, Rt

AT (23)

if equation (20) is used. Equation (23) suggests that
the ratio of Nu to T, Ra'"? is always constant, that is

= (24)

where 4 is a constant to be found. Upon substituting
equation (22) into equation (24), we finally obtain

Vi / Ra'? ’s
M= T Ra T In (@fa)/(2.5k) (25)
which may readily be evaluated once the unknown
constant 4 has been determined. Regarding the Ray-
leigh number the same argument as one given to equa-
tion (22) holds for equations (23)—(25). The validity
of equations (24) and (25) will be tested extensively
for various parametric values solving equations (11)-
(13) with the boundary conditions (14)—(17) numeri-
cally in the next two sections. A value of 4 of 0.4 was
thus found to predict Nu with the help of equation
(25).

The engineering significance of the results described

Table 1. Effect of the size of computational domain on the
average Nusselt number (k — o)

Numerical

Ingham and — —
Ra Pop [8] A=3 A=5 4=10 4=15
20 2.183 1.9227  2.0925  2.1492 2.1631
40 3.008 2.8683 29414  3.0299 3.0427
100 4.582 4.4474 45591 45882 4.6023
400 8.691 8.5981 8.7922  8.8290 8.8444

S. KIMURA and 1. Pop

Table 2. Effect of a number of grid
points on the average Nusselt number
(A=10,k - )

Ra 40 x 31 50 x 41

20 2.1261 2.1424

40 29714 2.9836
100 4.5882 4.5987
400

§.8325

by equations (22) and (25) is that T, and Nu can
be evaluated immediately, provided & (=k/k;), R
(=a./a) and Ra are specified.

4. THE NUMERICAL COMPUTATIONS

Since the numerical scheme to be described in this
section is quite similar to that employed in two recent
papers by Kimura and Pop [27, 28] only an outline of
this method will be presented here.

One difficulty in the present problem, particularly
in a numerical point of view, is to determine appro-
priate far field boundary conditions. A possible con-
dition would be an open boundary condition at a finite
distance from a cylinder. The boundary conditions of

(a)

(b)
F1G. 2. Streamlines and isotherms for k = 1 and R = 0.2, (a)
Ra =20, Ay = 0.5 and A8 = | ; (b) Ra = 400, Ay = 2 and
A8 =0.1.
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equation (16) can therefore be replaced by

oW/or = 0,
0, =0 if oy/op <0, atr=A. (26)
30,/or =0 if /o >0

In order to determine an appropriate finite distance
A from a cylinder, we did several calculations varying
A from 3 to 15. The results of the average Nusselt
number for & — oo are given in Table 1 and compared
with the analytical solutions by Ingham and Pop
(1987). It is seen from the table that 4 = 10 is large
enough to produce an accurate numerical result. Next
we fixed 4 = 10, and refined the grid network in the
porous region from 40 x 31 to 50 x 41. The average
Nusselt numbers in Table 2 show that the differences
between the two are well below 1%.

The partial differential equations (11)—(13) were
finite-differenced employing control volume approach
and non-uniform grid network as described by Patan-
kar [29]. The total number of the nodal points varied
from 1333 (43 in the radial direction and 31 in the
angular direction) to 2911 depending upon R (the
ratio of the core radius to the cylinder one) and Ra,
the Rayleigh number. The convergence of the tem-
perature distribution was monitored at each iteration.

(a)

(b)

F1G. 3. Streamlines and isotherms for k = 20 and R = 0.5,
(a) Ra=20, Ay =1 and A8 =0.1; (b) Ra=400, Ay =5

and A6 = 0.1,
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The convergence criterion needed for termination of
computation was preassigned as

M N

+1 n
22 lorr—or
i J

<107

27

Sy o
':/
i

where the superscript # denotes the iteration order.

It should be noted that although computations were
performed for a large range of values of the par-
ameters k, R and Ra, we present here results only for
k=051, 4, 20 and v; R=0.2, 0.5 and 0.9;
Ra = 10, 20, 40, 100, 400 and 800. The output has
been displayed in terms of streamlines, isotherms,
average temperature as well as the average Nusselt
numbers.

5. RESULTS AND DISCUSSION

5.1. Streamline and isotherm pattern

Detailed streamline and isotherm behavior are pre-
sented in Figs. 24 for & = 1 and 20; Ra = 20 and 400.
In these plots the results are illustrated for three values
of R, namely, R = 0.2, 0.5 and 0.9. Each curve in the
plots on the left-hand side represents a streamline

(a)

(b)

F1G. 4. Streamlines and isotherms for & =20 and R = 0.9,
(a) Ra =20, Ay =1 and AB =0.1; (b) Ra =400, Ay =5
and A8 = 0.1.
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FiG. 5. Variation of the average boundary temperature with
Ra.(a) R=02:(b) R=0.5:(c) R=09.

while each curve on the right-hand side represents an
isothermal line. As is expected, evidence of plume
development is found near the top surface of the cyl-
inder. The width of plume decreases as Ra increases
and, therefore, the heat transfer activity in the plume
region is low ; the bottom side of the cylinder domi-
nates the heat transfer in the flow field. This results in
great differences between the temperature distribution
along the bottom and top symmetry lines. The thermal
boundary layer is well developed along the surface
of the cylinder and the temperature tends to zero
everywhere except in the vicinity of the cylinder and
in the plume when R is increased. Further, it is seen
from these figures that by increasing k the thermal
resistance across the cylinder wall becomces weaker
and thus the temperature driven force on the fluid
porous medium will be stronger. As is cvident,
however, when comparing the results in Figs. 2(a)-
4(a) with thosc in Figs. 2(b)-4(b), the parameter Ru
has a stronger effect on the flow and temperature fields
than the parameter 4.

Complementary to the previous six figures, Figs. 5-

S. Kimura and L. Pop

05 14 20
- O & G

—Eq.{22)]

(c}

F1G. 6. Variation of the local Nusselt number with ¢, (a)
R=02:b)R=05:(c) R=029,

8 depict the effects of the involved parameters in this
problem on the temperature and heat transfer
coefficients.

5.2. Temperature distribution

In Fig. S the variation of the average temperature
at the solid-fluid interface with respect to Ra for
several valucs of & (as indicated on graphs) and three
values of R is shown. The analytical solution rep-
resented by equation (22) is also plotted (full lines)
for comparison. These figurcs clearly show a very
good agrecment between the theoretical and numeri-
cal prediction of 7, especially for higher values of &,
which is in accord with the discussion on Rain Scction
3. Further, we see that the average temperature is
greatly influenced by the conjugated parameter & ; it
increases as k is increased.

5.3. Heat transfer coefficients
Figure 6 shows the distribution of the local Nusselt
number along the cylinder surface. The results arc



Conjugate free convection from a circular cylinder in a porous medium

1.0 T - M
o k=20
. 08 . ke 1
e o ket
l% 0.6 " k=05 e
© Q 2] .
T 04 n t s« & 8 B
3
E
0.2 B
{(a) 0.0 L -
10 100 1000
Ra
1.0 T
o k=20
0.8 o ked e
IF‘O 8 K=t
08 ¥ k=05 b
E
0.4 ] i 8 s 9 g
o)
Iz g, .
{b) 0.0 e L s e
i0 100 1000
Ra
1.0 S
0 k=20
~ 08 ® k=4 ﬂ
p=
s o ket ]
x% 0.6 B k=05 E
I os g g 8 g & §
1= ]
0.2 4
(C) 0.0 F— i . P
10 100 1000

Ra

F1G. 7. Variation of Nuj(Ra'”? T;) with Ra, (a) R = 0.2; (b)
R=0.5:(c) R=09.

depicted for k = 0.5 and 20; Ra = 10 and 800 when
R = 0.2, 0.5 and 0.9. Again, the remarkable effect of
kisclear. As k is increased, the local Nusselt number is
increased especially on the bottom side of the cylinder.

The variation of Nu/(Ra'?> T,) with Ra for four
values of k and three values of R is illustrated in Fig.
7. As was already noted in Section 3, we see here that
this quantity remains constant and has a value of 0.4
(=4). This enables us to suggest the analytical for-
mula (25) for the evaluation of the average Nusselt
number Nu. The reasons for this choice are: (i) the
simplicity in its structure and (ii) it is a very convenient
formula for engineering calculations. On the other
hand, it is worth mentioning that the constant 1 = 0.4
is very close to NufRa'? = 0.444 reported for the
problem of free convection boundary layer about an
isothermal vertical plate suspended in a porous
medium, see Cheng and Minkowycz [30]. This is con-
sistent with the limiting case of k — oo and Ra — large
but finite in equation (23).

In Fig. 8 we have shown the variation of the average
Nusselt number with Ra for several values of £k and
R. The analytical solution (25) has also been displayed
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F1G. 8. Variation of the average Nusselt number with Ra,
@ R=02;b)yR=05;(c) R=009.

here (full lines). Again, the agreement between
numeric and approximate solution is very good.

Finally, we notice that the effect of the radius ratio
R on the heat transfer results can be studied by com-
paring the results in Figs. 5-8. It can thus be observed
that for the same values of £ and Ra, the average
temperature and heat transfer coefficients are smaller
for smaller values of R (=0.2, say) than those for
larger values of R (=0.9, say). This is so because for
smaller R the solid insulation layer is thicker than that
for larger R.

6. CONCLUSIONS

This investigation has solved the problem of con-
jugate free convection from a horizontal circular cyl-
inder with a heated core region immersed in a fluid-
saturated porous medium. The geometry considered,
means that a vertical symmetry plane exists and the
problem is solved only for the vertical half plane.
The finite-differential equations formulated in polar
coordinates have yielded very accurate results for flow
and heat transfer characteristics. In the case of the
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boundary layer approximation simple approximate
formulae for the average temperature at the surface of
the cylinder and average Nusselt number were found,
which compare very well with the exact numerical
solutions. The authors believe that these formulac are
well suited for the problem because of the ease with
which they can be handled and accuracy with which
the average temperature and the average Nusselt num-
ber can be evaluated.

Acknowledgements—The authors gratefully acknowledge a
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Conjugate free convection {rom a circular ¢ylinder in a porous medium

CONVECTION NATURELLE CONJUGUEE A PARTIR D’UN CYLINDRE CIRCULAIRE
NOYE DANS UN MILIEU POREUX

Résumé—Le but de I"étude est de formuler et de résoudre le probléme de la convection naturelle permanente
a partir d'un cylindre circulaire horizontal, avec un coeur chauffé, noyé dans un milieu poreux saturé de
fluide. Les équations sont résolues numériquement en utilisant une technique de différences finies. Le
rapport des conductivités de la paroi du cylindre et du milieu poreux varie de 0.5 a U'infini. Le rapport des
rayons intérieur ct extérieur du cylindre a les valeurs 0.2, 0.5 et 0.9. Les résultats sont comparés a la
solution exacte du cas extréme d’un probléme non conjugué. On obtient ainsi des solutions approchées
pour la température moycnne de la frontiére entre le cylindre et la matrice poreuse et pour le nombre de
Nusselt moyen, et les résultats sont confirmés par des calculs numériques. On peut remarquer que cette
¢tude donne des formules compactes pour fournir une information sur la distribution de température ct
sur le transfert thermique & partir du cylindre. ce qui peut étre utile dans beaucoup d’applications en
technologie thermique.

KONJUGIERTE FREIE KONVEKTION AN EINEM KREISZYLINDER IN EINEM
POROSEN MEDIUM

Zusammenfassung—In der vorliegenden Arbeit wird das Problem der stationiren freien Konvektion an
einem horizontalen Kreiszylinder mit beheiztem Kern, der in ein flissigkeitsgesdttigtes pordses Medium
eingebettet ist, formuliert und geldst. Die Bilanzgleichungen werden mit einem effizienten Finite-Differ-
enzen-Verfahren numerisch gelost. Der EinfluB unterschiedlicher Eingangsparameter ist in tabellarischer
und grafischer Form dargestellt. Das Verhiltnis der Wirmeleitfihigkeiten der Zylinderwand und des
pordsen Mediums wird im Bereich zwischen 0,5 und unendlich variiert. Fiir das Verhiltnis von innerem
zu duflerem Zylinderradius wird 0,2 ; 0,5 und 0,9 gewiihlt. Die Ergebnisse werden mit der exakten Losung
fur den Extremfall eines nicht-konjugierten Problems verglichen. Néherungslésungen fiir die mittlere
Randtemperatur zwischen Zylinder und poréser Matrix und fiir die mittlere Nusselt-Zahl werden cbenfalls
ermittell. Die Ergebnisse werden von den numerischen Berechnungen bestétigt. Es soll angemerkt werden,
daB die vorliegende Analyse komprimierte Formeln liefert, um niitzliche Informationen tber die Tem-
peraturverteilung und den Wérmetransport an einem Zylinder bereitzustellen, was weitreichende Anwen-
dungen auf dem Gebiet der Wirmetechnik finden kann.

COITPA’KEHHASL CBOBOJHASI KOHBEKLIUA OT KPYI'OBOI'O LHTUJIMHIPA,
[MOMEMEHHOI'O B IMTOPUCTYIO CPEAY

Annoranmsi—Llenbl0 HACTOSAINETO KCCIICAOBAHUSA fABJIfAeTCS (GOPMYJIMPOBKA H PElUICHME 3aJadH CTAlHO-
HapHo#l cBOOGOIHOH KOHBEKLHMH OT FOPH3OHTAJLHOTO KPYrOBOIO LMJIMHApA, Harperas HEHTPabHas
4acTh KOTOPOro MOMENIEHA B HACHILIEHHYIO XHAKOCThIO MOPUCTYIO cpelly. Omnpeaessiolie YpaBHEHUS
PCIIAIHCh YMCJIEHHO C MCUOJb30BaHHEeM 3(eKTHBHOrO MeT0/a KOHEYHBIX pasHOCTeH. DddekThl pai-
JINYHBIX TIAPAaMETPOB, BXOAALINX B 3a4a4y, NpeACTaBJICHR B BUAe Tabmuu ¥ rpadukoB. 3Ha4eHHS OTHO-
LIeHNs TEIUIONPOBOAHOCTEH CTeHKM IMIMHApAa W TOPHCTO#H cpedbl usMeHsumck ot 0,5 nmo
HeckoHeuHocTH. OTHOLUEHAE BHYTPEHHErO M BHELLIHErO paaMycoB LUIMHApa coctasiasiuo 02; 0,5 u 0.9.
Pe3ynbTaThl CpABHUBAJIMCH C TOYHBIM PEIUEHHEM AJIA DKCTPEMAILHOTO CJIy4as HECOTIPSKEHHOM 3aJavu.
HaiineHb! Takxke NpHOJTMXEHHBIC PELICHAS AJIs CPEIHEH TeMIEpaTypbl IPAHHIIbI MEXOY UMIKHAPOM H
MOPHCTOR MaTpHIeH, a Takxke Aa cpenHero yuciaa HyccenpTa, H mojy4eHO MOATBEPKICHHE PEIYJbTa-
TOB YHCJIEHHBIMH pacdeTaMu. MOXHO OTMETUTH, UTO HACTOALLMNA aHAIN3 JAeT KOMIIAKTHbIE HopMy.ibl
NSl TIOJIYYEHHs MOJe3HOH MH(POPMAIMH O paclpeleHHH TEMIepaTyp M TemrooOMeHe wWiIMHApa,
KOTOPBIE MOI'YT LIHPOKO HCHOJIB30BATLCA AJIS OMHCAHUA PAaIMYHBIX TEXHOJOTHYECKHX TEIUIOBBIX IPO-
11ECCOB,
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